16 research outputs found

    A global view of shifting cultivation: Recent, current, and future extent

    Get PDF
    Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing–based land cover and land use classifications, as these are unable to adequately capture such landscapes’ dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation at a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation—the majority in the Americas (41%) and Africa (37%)—this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation

    Disease expression in juvenile polyposis syndrome : a retrospective survey on a cohort of 221 European patients and comparison with a literature-derived cohort of 473 SMAD4/BMPR1A pathogenic variant carriers

    Get PDF
    Purpose Juvenile polyposis syndrome (JPS) is a rare, autosomal-dominantly inherited cancer predisposition caused in approximately 50% of cases by pathogenic germline variants in SMAD4 and BMPR1A. We aimed to gather detailed clinical and molecular genetic information on JPS disease expression to provide a basis for management guidelines and establish open access variant databases. Methods We performed a retrospective, questionnaire-based European multicenter survey on and established a cohort of SMAD4/BMPR1A pathogenic variant carriers from the medical literature. Results We analyzed questionnaire-based data on 221 JPS patients (126 kindreds) from ten European centers and retrieved literature-based information on 473 patients. Compared with BMPR1A carriers, SMAD4 carriers displayed anemia twice as often (58% vs. 26%), and exclusively showed overlap symptoms with hemorrhagic telangiectasia (32%) and an increased prevalence (39% vs. 13%) of gastric juvenile polyps. Cancer, reported in 15% of JPS patients (median age 41 years), mainly occurred in the colorectum (overall: 62%, SMAD4: 58%, BMPR1A: 88%) and the stomach (overall: 21%; SMAD4: 27%, BMPR1A: 0%). Conclusion This comprehensive retrospective study on genotype-phenotype correlations in 694 JPS patients corroborates previous observations on JPS in general and SMAD4 carriers in particular, facilitates recommendations for clinical management, and provides the basis for open access variant SMAD4 and BMPR1A databases.Peer reviewe

    Colorectal cancer incidences in Lynch syndrome: a comparison of results from the prospective lynch syndrome database and the international mismatch repair consortium

    Get PDF
    Objective To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants. Methods CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands. Results In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17% and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8% and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups. Conclusions Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so

    Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair

    Get PDF
    Abstract DNA repair defects underlie many cancer syndromes. We tested whether de novo germline mutations (DNMs) are increased in families with germline defects in polymerase proofreading or base excision repair. A parent with a single germline POLE or POLD1 mutation, or biallelic MUTYH mutations, had 3-4 fold increased DNMs over sex-matched controls. POLE had the largest effect. The DNMs carried mutational signatures of the appropriate DNA repair deficiency. No DNM increase occurred in offspring of MUTYH heterozygous parents. Parental DNA repair defects caused about 20–150 DNMs per child, additional to the ~60 found in controls, but almost all extra DNMs occurred in non-coding regions. No increase in post-zygotic mutations was detected, excepting a child with bi-allelic MUTYH mutations who was excluded from the main analysis; she had received chemotherapy and may have undergone oligoclonal haematopoiesis. Inherited DNA repair defects associated with base pair-level mutations increase DNMs, but phenotypic consequences appear unlikely

    Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk.

    No full text
    We mapped a high-penetrance gene (CRAC1; also known as HMPS) associated with colorectal cancer (CRC) in the Ashkenazi population to a 0.6-Mb region on chromosome 15 containing SCG5 (also known as SGNE1), GREM1 and FMN1. We hypothesized that the CRAC1 locus harbored low-penetrance variants that increased CRC risk in the general population. In a large series of colorectal cancer cases and controls, SNPs near GREM1 and SCG5 were strongly associated with increased CRC risk (for rs4779584, P = 4.44 x 10(-14))

    Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution

    Get PDF
    Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2 and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other possible drivers. However, only ~10% of tumours harbour detectable pathogenic changes in any one driver gene, and where present, the mutations are often predicted to be present within cancer sub-clones. We specifically detect parallel evolution of multiple SETD2 mutations within different sub-regions of the same tumour. By contrast, large copy number gains of chromosomes 7, 12, 16 and 17 are usually early, monoclonal changes in pRCC evolution. The predominance of large copy number variants as the major drivers for pRCC highlights an unusual mode of tumorigenesis that may challenge precision medicine approaches
    corecore